Secant Varieties of Toric Varieties

نویسنده

  • DAVID COX
چکیده

If X is a smooth projective toric variety of dimension n we give explicit conditions on characters of the torus giving an embedding X →֒ Pr that guarantee dimSecX = 2n+ 1. We also give necessary and sufficient conditions for a general point of SecX to lie on a unique secant line when X is embedded into Pr using a complete linear system. For X of dimension 2 and 3 we give formulas for deg SecX in terms of lattice points and the Chern classes of X .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic Algebraic Geometry

Phylogenetic algebraic geometry is concerned with certain complex projective algebraic varieties derived from finite trees. Real positive points on these varieties represent probabilistic models of evolution. For small trees, we recover classical geometric objects, such as toric and determinantal varieties and their secant varieties, but larger trees lead to new and largely unexplored territory...

متن کامل

. A C ] 1 2 Ju n 20 05 COMBINATORIAL SECANT VARIETIES

The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...

متن کامل

ar X iv : m at h / 05 06 22 3 v 2 [ m at h . A C ] 1 3 Se p 20 05 COMBINATORIAL SECANT VARIETIES

The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...

متن کامل

Combinatorial Secant Varieties

The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...

متن کامل

Algebraic Geometry of Gaussian Bayesian Networks

Conditional independence models in the Gaussian case are algebraic varieties in the cone of positive definite covariance matrices. We study these varieties in the case of Bayesian networks, with a view towards generalizing the recursive factorization theorem to situations with hidden variables. In the case when the underlying graph is a tree, we show that the vanishing ideal of the model is gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005